SYNTHESIS OF RADIOACTIVE SULINDAC-SULFONE-LACTONE VIA SULFONIUM SALT AND 14C ALKYLHALIDE Gerhard J. Sperl, PhD+, Rifat Pamukcu, MD*, Klaus Brendel, PhD, Paul H. Gross+* University of the Pacific, Stockton, California, 95211: Department of Chemistry**; Cell Pathways, Inc.*, Horsham, Pennsylvania; University of Arizona, Tucson, Arizona: Department of Pharmacology. SUMMARY A new method of radioactive labeling via sulfonium salts and ¹⁴C alkylhalides is reported, along with a novel synthesis of (E)-rac-(2'-buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-[¹⁴C-methyl]-sulfonylbenzylidene)-indan (scheme 1, compound ¹⁴CH₃-SO₂-L), a drug that showed very high activity, when tested in various tumor cell lines (1). Key words: Carbon-14, Sulfonium salt, Sulindac-Sulfone-Lactone. INTRODUCTION In drug syntheses, many carbon atoms could be labeled in order to determine their metabolic fates. However, economy and safety dictate that the radioactive label should be introduced as late as possible in the synthesis. Sulfonium salts are well known in the literature (2,3), but were apparently not used for the incorporation of ¹⁴C labels into R-S(O)_n-group containing compounds, with n = 0, 1, 2. We wish to report here a highly efficient method of radioactive labeling of sulfides via sulfonium salts and ¹⁴C CCC 0362-4803/99/090877-07\$17.50 Copyright @1999 John Wiley & Sons, Ltd. Received 27 March 1998 Revised 24 February 1999 Accepted 1 March 1999 alkylhalides, which avoids the alkylation with ¹⁴C alkylhalides (4) of mercaptans, associated with stench, oxidation lability, and side reactions such as Michael additions (5). These may occur during our synthesis of (E)-rac-(2'-buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-[¹⁴C-methyl]-sulfonylbenzylidene)-indan (¹⁴CH₃-SO₂-L). Our method avoids these problems, and could be applied in the radioactive synthesis of a new generation of selective cyclooxygenase-2 inhibitors and orally active anti-inflammatory agents, which contain methylsulfonylgroups (6,7). The inert ¹⁴CH₃-SO₂-groups would survive most catabolic steps (8). ### Scheme 1. CH₃-S-A (acid) $$CH_3$$ -S-A (acid) CH_3 -S-L (lactone) CH_3 -S-L CH_3 -S-L Reaction conditions: a) 1) NBS, 2) iPr₂EtN; b) ¹⁴CH₃I / NaI; c) OXONE. ### **CHEMISTRY** A "traditional" 8-step synthesis of (E)-rac-(2'-buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-[14C-methyl]-sulfonylbenzylidene)-indan 14CH₃-SO₂-L, would require a 6-step radioactive synthesis of the precursor 14CH₃-S-A, from 4-[14C-methyl]-thiobenzylmagnesium chloride (4,9,10,11). CH₃-S-A is the immediate precursor in the synthesis of Sulindac (8) CH₃-SO-A. The radioactive Grignard reagent is available in a 3-step sequence (4,11) from thiophenol and 14CH₃L. Oxidation of the sulfide $^{14}\text{CH}_3\text{-S-A}$ with OXONE (12) would give Sulindac-sulfone $^{14}\text{CH}_3\text{SO}_2\text{-A}$, which would lead in a halolactonization-elimination reaction (1) to the $\Delta^{\alpha,\beta}$ - butenolide $^{14}\text{CH}_3\text{-SO}_2\text{-L}$, (E)-rac-(2'-buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-[$^{14}\text{C-methyl}$]sulfonylbenzylidene)-indan. By contrast, our new method of radioactive labeling with [$^{14}\text{C-methyl}$]iodide sulfonium salts leads to the same $\Delta^{\alpha,\beta}$ - butenolide $^{14}\text{CH}_3\text{-SO}_2\text{-L}$, (E)-rac-(2'-buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-[$^{14}\text{C-methyl}$]-sulfonylbenzylidene)-indan , in two steps. The label is incorporated according to scheme 2, and leads to ¹⁴CH₃-S-L. The SN₂ equilibrium can be shifted forward by ¹⁴CH₄I and backwards by NaI. An excess of ¹⁴CH₄I can easily be recycled. ### Scheme 2. Sulfonium salt The second step is the oxidation of ¹⁴C-sulfide lactone ¹⁴CH₃-S-L with OXONE (12) in DMA/H₂O to give ¹⁴CH₃-SO₂-L. # RESULTS AND DISCUSSION Our labeling method of CH₃-S-groups was first tested cold with CD₃I. The actual ¹⁴C radioactive syntheses were done at Amersham with ¹⁴CH₃I. Compounds CH₃-S-A and CH₃-S-L were allowed to react with CD₃I at a certain NaI concentration. The high iodide concentration (1.2 M in the case of CH₃-S-A, 0.66 M for CH₃-S-L) pushes the equilibrium backwards and either CH₃I or CD₃I were Copyright ©1999 John Wiley & Sons, Ltd. J. Labelled Cpd. Radiopharm. 42, 877-883 (1999) eliminated from the sulfonium intermediate. Variation of the CD₃I : sulfide (CH₃-S-A or CH₃-S-L) ratio gave different incorporation rates, which were determined by ¹H-NMR spectroscopy. If the CH₃ group of compound CH₃-S-A is replaced by a CD₃ group, the signal at δ 2.54 (s, CH₃-S) decreases. Integration and comparison with the signal at δ 2.15 (s, =C-CH₃) allowed the calculation of the incorporation rate. In case of lactone CH₃-S-L the signals at δ 2.52 (s, CH₃-S) and δ 1.69 (s, O-C-CH₃) were compared with each other. The CD₃I : CH₃-S-A ratio 1:1 gave about 50 %, 2:1 60 %, and 4:1 gave about 70 % incorporation. A CD₃I : CH₃-S-L ratio 8:1 gave about 90 % incorporation. The actual radioactive syntheses with ¹⁴CH₃I (55 mCi/mmol) and with a ¹⁴CH₃I : sulfide (CH₃-S-A or CH₃-S-L) ratio of 2:1, which incorporated a ¹⁴CH₃I recycling step, led to ¹⁴CH₃-S-A (35 mCi/mmol; 64 % incorporation) and to ¹⁴CH₃-S-L (38 mCi/mmol; 69 % incorporation). Higher ¹⁴C incorporation rates could be achieved by higher ¹⁴CH₃I concentrations. However, this is usually not done, because for testing in vivo, compounds with lower specific activity are needed. Oxidation of the radioactive sulfides ¹⁴CH₃-S-A and ¹⁴CH₃-S-L with OXONE led to the formation of the sulfones ¹⁴CH₃-SO₂-A (35 mCi/mmol) and ¹⁴CH₃-SO₂-L (38 mCi/mmol). In all cases, except in the oxidation of ¹⁴CH₃-S-A to give ¹⁴CH₃-SO₂-A (95.7 % radiochemical recovery), the radioactivity was found almost exclusively in the product (> 99 %). These findings allayed our fear, that ¹⁴CH₃ may be incorporated into DMSO-solvent, which can be methylated at higher temperatures (13), especially under illumination. As we had hoped, trimethylsulfoxonium iodide is less readily formed, because DMSO is a weaker nucleophile than R-S-Ar. If other alkylhalides R-I were to be used instead of CH₃I, alkylation of DMSO is even less likely (14). ### EXPERIMENTAL PART 'H-NMR spectra were recorded at 300 MHz (Varian Gemini 300 FTNMR spectrophotometer). (Z)-5-Fluoro-2-methyl-1-(4-[methyl-d₃]-thiobenzylidene)-3-indenylacetic acid (CD₃-S-A): Sulfide CH₃-S-A (1 g, 2.94 mmol) and NaI (0.7 g, 4.67 mmol) in DMSO (4 mL) were stirred with CD₃I [a) 0.2 mL; 3.2 mmol; 1.09 equ.; b) 0.4 mL; 6.4 mmol; 2.17 equ.; c) 0.8 mL; 12.8 mmol; 4.35 equ.] in the dark (5 d; 25 °C). CH₃I and CD₃I were evaporated at 3 mm Hg. The solution was added dropwise to cold aqueous 2% NaHSO₃. A yellow solid was filtered off, was washed with H₂O (30 mL), and was dissolved in THF (3 mL), followed by 1N NaOH (25 mL). The solution was extracted with CH₂Cl₂ (2 x 50 mL), and was added dropwise to cold aqueous 10% HCl (100 mL). The solid was filtered off, and was washed with H₂O (30 mL) and n-hexane (30 mL) to give 0.95 g of crude CH₃/CD₃-S-A. ¹H-NMR (CDCl₃): δ 2.15 (s, 3H, CH₃), 2.54 (s, SCH₃), 3.57 (s, 2H, CH₂CO), 6.74-7.37 (m, 3H, ar.), 7.30 (s, 1H, =CH), 7.35-7.52 (AB, 4H, -Ph-S). CD₃ - incorporation rate: a) 50 %, b) 60 %, c) 70 %. (Z)-5-Fluoro-2-methyl-1-(4-[methyl-d₃]-sulfonylbenzylidene)-3-indenylacetic acid (CD₃-SO₂-A): To a stirred mixture of CD₃-S-A (0.34 g, 1.0 mmol) and OXONE (2 KHSO₃-KHSO₄-K₂SO₄, 2.46 g, 4.0 mmol) in dimethylacetamide (DMA; 3 mL) was added H₂O (1 mL) at 0°C, slowly (0.5 h), to control the exotherm. The DMA-phase of the suspension was added slowly to ice-water (40 mL). The solid part of the suspension was washed with ethanol (3x5 mL). The ethanol phase was then also added to the ice-water. A yellow solid was filtered off, and was washed with H₂O (40 mL) and n-hexane (20 mL). Recrystallization from EtOH (3.5 mL) gave at -10°C yellow CD₃-SO₂-A (0.35g, 0.93 mmol, 93%). ¹H-NMR (CDCl₃): δ 2.16 (s, 3H, CH₃), 3.30 (s, SO₂CH₃), 6.70-7.17 (m, 3H, ar.), 7.38 (s, 1H, =CH), 7.78-8.04 (AB, 4H, -Ph-SO₂). (E)-rac-(2'-Buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-methylthiobenzylidene)-indan (CH₃-S-L): Synthesis according to literature (1). Recrystallization from MeOH gave CH₃-S-L. ¹H-NMR (CDCl₃): δ 1.69 (s, 3H, CH₃), 2.52 (s, 3H, SCH₃), 6.00 (s, 1H, =CHCO), 6.73 (s, 1H, =CH), 6.90-7.44 (m, 7H, ar.). (E)-rac-(2'-Buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-3-(4-[methyl- d_3]-thiobenzylidene)-indan (CD₃-S-L): Sulfide lactone CH₃-S-L (2 g, 5.91 mmol) and NaI (8 g, 53.37 mmol) in DMSO (80 mL) were stirred with CD₃I (3 mL, 48 mmol, 8.12 equ.) in the dark (6 d; 25 °C). The work-up for CD₃-S-A was followed to give 1.91 g of crude CH₃/CD₃-S-L mixture. CD₃ - incorporation rate: 90 %. ¹H-NMR (CDCl₃): δ 1.69 (s, 3H, CH₃), 2.52 (s, SCH₃), 6.00 (s, 1H, =CHCO), 6.73 (s, 1H, =CH), 6.90-7.44 (m, 7H, ar.). (E)-rac-(2'-Buten-1',4'-olido)-[3',4':1,2]-6-fluoro-2-methyl-1-(4-[methyl-d₃]-sulfonylbenzylidene)indan (CD₃-SO₂-L): To a stirred mixture of CD₃-S-L (0.5 g, 1.48 mmol) and OXONE (2 KHSO₃·KHSO₄·K₂SO₄, 2.27 g, 3.7 mmol) in DMA (5 mL) was added H₂O (1 mL) at 0°C, slowly (0.5 h), to control the exotherm. The mixture was stirred (1 d; 25 °C; yellow → white), and was added dropwise to ice-water (100 mL). A white solid was filtered off, was washed with H₂O (20 mL), and with n-hexane (20 mL), and was recrystallized from acetone to give at -10°C white sulfone lactone CD₃-SO₂-L (0.47 g; 1.27 mmol; 86%). ¹H-NMR (CDCl₃): δ 1.69 (s, 3H, CH₃), 3.10 (s, SO₂CH₃), 6.05 (s, 1H, =CHCO), 6.77 (s, 1H, =CH), 7.02-7.37 (m, 3H, ar.), 7.55-7.94 (AB, 4H, -PhSO₂). ### ACKNOWLEDGMENT P.H. Gross thanks Cell Pathways, Inc. for funding this research. G.J. Sperl thanks AMERSHAM for testing the supplied procedures with radioactive material. # REFERENCES - 1. Sperl G.J., Pamuku R., Brendel K., Gross P.H. J.Med.Chem.:submitted (1998). - 2. Johnson C.R., Phillips W.G. J. Am. Chem. Soc., 91: 682 (1969). - 3. Ngola S.M., Dougherty D.A. J. Org. Chem., 61: 4355 (1996). - 4. Gabriel J., Seebach D. Helv. Chim. Acta, 67:1070 (1984). - 5. Rao Y.S. Chem. Rev., 76: 625 (1976). - Huang H.C., Li J.J., Garland D.J., Chamberlain T.S., Reinhard E.J., Manning R.E., Seibert K., Koboldt C.M., Gregory S.A., Anderson G.D., Veenhuizen A.W., Zhang Y., Perkins W.E., Burton E.G., Cogburn J.N., Isakson P.C., Reitz D.B. - J. Med. Chem., 39: 253 (1996). - Li J.J., Norton M.B., Reinhard E.J., Anderson G.D., Gregory S.A., Ikason P.C., Koboldt C.M., Masferrer J.L., Perkins W.E., Seibert K., Zhang Y., Zweifel B.S., Reitz D.B. J. Med. Chem., - 39:1846 (1996). - Duggan D.E., Hooke K.F., Risley E.A., Shen T.Y., Van Arman C.G. J. Pharmacol. Exp. Ther. , 201: 8 (1977). - Shuman R.F., Pines S.H., Shearin W.E., Czaja R.F., Abramson N.L., Tull R. J. Org. Chem., 42: 1914 (1977). - 10. Pines S.H., Douglas A.W. J. Am. Chem. Soc., 98: 8119 (1976). - 11. Pines S.H., Czaja R.F., Abramson N.L. J. Org. Chem., 40: 1920 (1974). - 12. Trost B.M., Breslau R. J. Org. Chem., 53: 532 (1988). - 13. Kuhn R., Trischmann H. Liebigs Ann., 611:117 (1958). - 14. Koenig H., Metzger H., Seelert K. Chem. Ber., 98: 3712 (1965).